

The American Journal of Clinical Nutrition AJCN/2016/134833 Version 1 Vitamin D status and prevalent diabetic retinopathy in African Americans and Caucasians: the Atherosclerosis Risk in Communities (ARIC) cohort study

Corresponding Author: Amy E Millen Additional Authors: Michelle W Sahli, Jing Nie, Michael J LaMonte, Pamela L Lutsey, Barbara EK Klein, Julie A Mares, Kristin J Meyers, Christopher A Andrews, Ronald Klein

This paper includes additional materials for review purposes. To view additional materials, click on the [Download Supplemental Files] link available in the Full MS Info view of the manuscript. To reach this manuscript view, go to http://submit.ajcn.org, and log in to your account. Enter the Reviewer Area and click on Active Reviews.

Information for Authors: http://www.ajcn.org/site/misc/ifa.xhtml

Vitamin D status and prevalent diabetic retinopathy in African Americans and Caucasians: the Atherosclerosis Risk in Communities (ARIC) Cohort Study

Amy E. Millen¹, Michelle W. Sahli², Jing Nie³, Michael J. LaMonte³, Pamela L. Lutsey⁴, Barbara E. K. Klein⁵, Julie A. Mares⁵, Kirstin J. Meyers⁵, Christopher A. Andrews⁶, Ronald Klein⁵

Author's Affiliations:

¹ <u>Corresponding author:</u> Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, 270 Farber Hall, Buffalo, NY 14214-8001. Telephone: (716) 829-5377, Fax: (716) 829-2979, <u>aemillen@buffalo.edu</u>. (AEM)

³ Department of Public Health and Health Sciences, School of Health Professions and Studies, University of Michigan-Flint, Flint, MI (MWS)

³ Department of Epidemiology and Environmental Health , School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY (AEM, JN, MJL)

⁴ Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN (PLL)

⁵Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, The University of Wisconsin-Madison, Madison, WI (CAA)

⁶Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI. (BEKK, JAM, KJM, RK) Author's last names: Millen, Sahli, Nie, LaMonte, Lutsey, Klein, Mares, Meyers, Andrews, Klein

Disclaimers: None

Corresponding author: Amy E. Millen, PhD., Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, 270 Farber Hall, Buffalo, NY 14214-8001. Telephone: (716) 829-5377, Fax: (716) 829-2979, <u>aemillen@buffalo.edu</u>.

Sources of Support:

This research is supported by the <u>NIH National Institute on Aging</u> grant number **R01 AG041776**, <u>NIH National Heart, Lung, and Blood Institute</u> grant number **R01 HL103706**, and the <u>NIH Office of Dietary Supplements</u> grant number **R01 HL103706-S1**.

The Atherosclerosis Risk in Communities Study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts (**HHSN268201100005C**,

HHSN268201100006C, HHSN268201100007C, HHSN268201100008C,

HSN268201100009C, HHSN268201100010C, HHSN268201100011C, and

HHSN268201100012C). The authors thank the staff and participants of the ARIC study for their important contributions.

Short running title: Vitamin D status and diabetic retinopathy

Abbreviations:

25[OH]D	25-hydroxyvitamn D
ARIC	Atherosclerosis Risk in Communities Study
BMI	Body mass index
DR	Diabetic retinopathy
HBA _{1c}	Glycosylated hemoglobin A _{1c}
HDL	High density lipoprotein
LDL	Low density lipoprotein
NPDR	Non-proliferative diabetic retinopathy
PDR	Proliferative diabetic retinopathy
VDR	Vitamin D receptor

Clinical trial registry number: NA

Abstract word count=311; Text word count=3,497

Number of tables for text=3; Online-Only Tables=1

1 ABSTRACT

Background: Vitamin D status has been hypothesized to protect against development of diabetic 2 retinopathy via its anti-inflammatory and anti-angiogenic properties. Additionally, *in vitro* and *in* 3 vivo studies suggest vitamin D favorably influences blood pressure and blood glucose control, 4 strong risk factors for diabetic retinopathy. 5 **Objective:** We examined the association between vitamin D status and prevalent diabetic 6 retinopathy in participants with diabetes from a population-based cohort. 7 **Design:** Among participants in the Atherosclerosis Risk in Communities Study with diabetes at 8 9 visit 3 (1993-1995), 1,339 (906 Caucasians, 433 African Americans) had serum 25hydroxyvitamin (25[OH]D) concentrations assessed at visit 2 (1989-1992) and nonmydriatic 10 retinal photographs taken at visit 3. Dietary intake of vitamin D was assessed at visit 1 (1987-11 1989). Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals 12 (CIs) for diabetic retinopathy by categories of season-adjusted 25(OH)D (<30 [referent], 30-<50, 13 50-<75 and \geq 75 nmol/L), by quartile of vitamin D intake (IU/day), and use of vitamin D or fish 14 oil supplements (yes/no). P for trend was estimated using continuous 25(OH)D or vitamin D 15 intake. ORs were adjusted for race, and duration of diabetes. We further adjusted for HBA_{1c} and 16 hypertension to examine if 25(OH)D influenced diabetic retinopathy via its effects on either 17 glycemic control or blood pressure. 18 Results: ORs (95% CIs) for retinopathy, adjusted for race and duration, were 0.77 (0.45-1.32), 19 20 0.64 (0.37-1.10), and 0.39 (0.20-0.75), p for trend=0.001, for participants with 25(OH)D of 30-<50, 50-<75, and \geq 75 nmol/L, respectively. Further adjustment for hypertension minimally 21 influenced results (data not show), but adjustment for HBA_{1c} attenuated the OR among those 22

- with $25(OH)D \ge 75$ (0.47 [0.23-0.96], p for trend=0.030). No statistically significant association
- 24 was observed between vitamin D intake from foods or supplements and retinopathy.
- 25 **Conclusions:** 25(OH)D concentrations \geq 75 nmol/L were associated with lower odds of any
- retinopathy assessed three years later, perhaps in part via vitamin D's influence on blood glucose
- 27 control.

29 INTRODUCTION

30	Diabetic retinopathy is the leading cause of blindness in adults aged 20-74 years in the
31	United States. Among individuals with diabetes it has direct influences on quality of life and
32	functional independence of aging, affecting ~28.5% of people with diabetes \geq 40 years (1).
33	Modifiable nutritional factors may influence risk for diabetic retinopathy, but they have been
34	relatively understudied in epidemiologic investigations (2). Accumulating evidence from some
35	(3-12), but not all (13-19), epidemiologic studies suggest that vitamin D status may be a novel
36	modifiable risk factor for diabetic retinopathy.
37	Vitamin D status is hypothesized to affect risk for retinopathy (4) due to its
38	immunomodulatory properties (20) as chronic low grade inflammation is hypothesized to
39	promote the development of retinopathy (21). Vitamin D is also hypothesized to positively
40	regulate hypertension (22) and blood glucose control (23), both of which are strong risk factors
41	for retinopathy (24, 25).
41 42	for retinopathy (24, 25). Using data from the prospective, population-based Atherosclerosis Risk in Communities
42	Using data from the prospective, population-based Atherosclerosis Risk in Communities
42 43	Using data from the prospective, population-based Atherosclerosis Risk in Communities (ARIC) Study, we investigated associations between vitamin D status, assessed with the blood
42 43 44	Using data from the prospective, population-based Atherosclerosis Risk in Communities (ARIC) Study, we investigated associations between vitamin D status, assessed with the blood biomarker of serum 25-hydroxyvitamn D (25[OH]D), and prevalent diabetic retinopathy
42 43 44 45	Using data from the prospective, population-based Atherosclerosis Risk in Communities (ARIC) Study, we investigated associations between vitamin D status, assessed with the blood biomarker of serum 25-hydroxyvitamn D (25[OH]D), and prevalent diabetic retinopathy assessed from graded fundus photographs taken three years later among Caucasian and African
42 43 44 45 46	Using data from the prospective, population-based Atherosclerosis Risk in Communities (ARIC) Study, we investigated associations between vitamin D status, assessed with the blood biomarker of serum 25-hydroxyvitamn D (25[OH]D), and prevalent diabetic retinopathy assessed from graded fundus photographs taken three years later among Caucasian and African American participants with primarily type 2 diabetes (n=1,339). 25(OH)D reflects vitamin D
 42 43 44 45 46 47 	Using data from the prospective, population-based Atherosclerosis Risk in Communities (ARIC) Study, we investigated associations between vitamin D status, assessed with the blood biomarker of serum 25-hydroxyvitamn D (25[OH]D), and prevalent diabetic retinopathy assessed from graded fundus photographs taken three years later among Caucasian and African American participants with primarily type 2 diabetes (n=1,339). 25(OH)D reflects vitamin D from all sources (sunlight, diet and supplements). We hypothesized that individuals with higher
42 43 44 45 46 47 48	Using data from the prospective, population-based Atherosclerosis Risk in Communities (ARIC) Study, we investigated associations between vitamin D status, assessed with the blood biomarker of serum 25-hydroxyvitamn D (25[OH]D), and prevalent diabetic retinopathy assessed from graded fundus photographs taken three years later among Caucasian and African American participants with primarily type 2 diabetes (n=1,339). 25(OH)D reflects vitamin D from all sources (sunlight, diet and supplements). We hypothesized that individuals with higher 25(OH)D concentrations would have lower odds of retinopathy than participants with lower

52 SUBJECTS AND METHODS

53 Study Sample

The ARIC Study, a population-based prospective study (26), recruited participants from 54 Forsyth County, North Carolina; Jackson, Mississippi; the northwestern suburbs of Minneapolis, 55 Minnesota; and Washington County, Maryland. Eligible participants were between 45 and 65 56 years of age at visit 1(1987-1989) and intended to remain in the community in which they lived. 57 All participants provided signed informed consent and the study protocol was approved by the 58 institutional review boards at each ARIC study site. 59 The present analyses use data collected at visits 1 (1987-1989), 2 (1990-1992) and 3 60 (1993-1995). This study sample consists of Caucasian and African American participants who 61 were classified as having diabetes (fasting blood glucose of 126 mg/dl or non-fasting blood 62 glucose of 200 mg/dl; self-report of a diabetes diagnosis; or use of medication for diabetes in the 63 2 weeks prior to the visit) at study visit 3, had gradable retinal fundus photos at visit 3 and serum 64 25(OH)D measures at visit 2. 65 There were 15,792 participants enrolled at visit 1, of which 12,887 attended visit 3. We 66 excluded 796 participants who did not consent to use of their data to study outcomes other than 67 68 cardiovascular disease. Of the remaining 12,091 participants, 1,899 were classified as having diabetes of whom 350 were missing data on retinopathy status (301 missing retinal photos and 69 70 49 with upgradable photos), 186 were missing serum 25(OH)D, 8 identified as neither African 71 American nor Caucasian, and 16 were missing data on pertinent covariates (glycosylated hemoglobin A_{1c} [HBA_{1c}] or hypertension), providing a sample of 1,339 participants. Analyses 72 involving dietary vitamin D data had 1,305 participants due to missing data on diet at visit 1. 73 74 **Retinal Photography**

75	Diabetic retinopathy was determined from grading of fundus photographs taken at visit 3
76	of one randomly selected eye. Participants sat in a dark room for 5 minutes to allow for
77	nonpharmocological pupil dilution (27). One 45-degree nonmydriatic retinal photograph was
78	taken with a Canon CR-45UAF nonmydriatic film camera (Canon USA, Itasca, IL) and was
79	centered to include the optic disc and the macula (27). Fundus photographs were graded for the
80	presence and severity of retinopathy at the University of Wisconsin Fundus Photograph Reading
81	Center using a standard grading system, the modified Arlie House classification scheme (28).
82	Twenty-one percent (n=280 of 1,339) of participants had any retinopathy, of which 207 had mild
83	non-proliferative diabetic retinopathy (NPDR), 44 had moderate to severe NPDR, 29 had
84	proliferative diabetic retinopathy (PDR), and 3 had macular edema.
85	Assessment of 25(OH)D and other biomarkers
86	Vitamin D status was assessed by analyzing participants' serum from fasting blood draws
87	taken at visit 2 for 25(OH)D concentrations (sum of 25[OH]D ₂ and 25[OH]D ₃) using liquid
88	chromatography in tandem with high-sensitivity mass spectrometry (LC-MS) (Waters Alliance
89	e2795; Waters, Milford, MA, USA) at the Collaborative Studies Clinical Laboratory at Fairview
90	University Medical Center (Minneapolis, MN), as previously described (29). The coefficient of
91	variation, representing sample processing and laboratory error was 10.9%. Differences in
92	25(OH)D concentrations due to season were accounted for using local regression (30). 25(OH)D
93	was regressed on day of blood draw and was conducted separately for Caucasians and African
94	Americans. Residuals were added back to the sample mean (60.09 and 47.43 nmol/L for
95	Caucasian and African Americans, respectively) and the season-adjusted values were used in all
96	further mentioned analyses.
07	Assessment of diotary and supplemental vitamin D intake

97 Assessment of dietary and supplemental vitamin D intake

98	Dietary intake of vitamin D was assessed at visit 1 using a reliable and previously
99	validated Willett 66-item semi-quantitative food frequency questionnaire (FFQ) (31, 32). At visit
100	3, participants were asked about their use of vitamin D and fish oil supplements, as source of
101	vitamin D. They were asked if they took fish oil (including omega-3 fatty acids,
102	eicosapentaenoic acid [EPA], cod liver oil), the duration of use, and the dose per week.
103	Participants were also asked whether or not they took vitamin D "on a regular basis," but no
104	additional information was asked on duration of use or dose. There were 48 participants who
105	reported use of either vitamin D or fish oil at visit 3.
106	Assessment of Covariates
107	At each visit trained study personnel collected information on participants' demographic
108	factors, health history, family health history, smoking, medication use and other potential risk
109	factors for cardiovascular disease (26). Blood collected at visit 2 (33) was assessed for serum
110	glucose, HBA _{1c} (34), hematocrit level (33), total plasma cholesterol, plasma triglyceride, low
111	density lipoprotein (LDL) and high density lipoprotein (HDL) cholesterol concentrations (35).
112	Physical activity was assessed at visit 1 using a modified version (36) of the previously
113	validated (37, 38) Baecke questionnaire from which we created a composite physical activity
114	index score ranging from 0 (low overall physical activity) to 6. Duration of diabetes was defined
115	as < 6 years and ≥ 6 years determined using data on self-reported diabetes diagnosis, fasting and
116	non-fasting blood glucose levels, and diabetes medication use collected at visits 1, 2 or 3.
117	25(OH)D concentrations and other covariate data used in these analyses were assessed at visit 2
118	with the exception of information on education, diet, physical activity (visit 1), and duration of
119	diabetes (visit 3).
120	Statistical Analysis

121	Guided by the Institute of Medicine, vitamin D status was defined using 25(OH)D
122	concentrations (nmol/L) as deficient (<30), inadequate (>30 to \leq 50), and using two categories
123	within the concentrations considered adequate (>50 to <75 and \geq 75) (39). Participant
124	characteristics and risk factors for retinopathy were examined by vitamin D status, as well as by
125	presence of retinopathy (any versus none), using t-tests, ANOVAs or chi-square tests.
126	Logistic regression was used to estimate the odds ratios (ORs) and 95% confidence
127	intervals (95% CIs) for any prevalent retinopathy (both NPDR and PDR) by vitamin D status
128	with the referent category of deficient status (<30 nmol/L) (39). We also estimate the odds of
129	having PDR or macular edema (n=31) among participants with $25(OH)D \ge 50$ compared to <50
130	nmol/L. We had to apply the Firth bias-correction method for quasi-complete separation(40) due
131	to the low number of outcomes. The ORs and 95% CIs for retinopathy per 10 nmol/L difference
132	in 25(OH)D are also presented and p-for trend analyses were conducted using 25(OH)D as a
133	continuous variable.

Age, sex, race, education, duration of diabetes, smoking status, drinking status, ethanol 134 intake, physical activity index score, body mass index (BMI), waist circumference, hematocrit 135 level, LDL, HDL, total cholesterol and triglyceride concentrations were assessed as potential 136 confounders of the vitamin D status and retinopathy association. If these variables were 137 associated with either vitamin D status or prevalent retinopathy at a p-value of 0.20 or less, we 138 considered them for inclusion in the multivariable model. Using a forward, stepwise procedure, 139 only potential confounders that changed the ORs $\geq 10\%$ were included in the adjusted model. 140 The multivariable model was also adjusted for hypertension status and HBA_{1c} (as a measure of 141 blood glucose control) to examine whether these variables mediated the 25(OH)D and 142 143 retinopathy association.

144	A sensitivity analysis was conducted restricting our sample to include only individuals
145	defined as having diabetes at both visits 2 (when 25[OH]D was measured) and 3. We wanted to
146	examine if the association between vitamin D status and retinopathy would change when the
147	sample was limited to those who were diagnosed with diabetes when 25(OH)D measures were
148	assessed. Effect modification of the vitamin D and retinopathy association by age, sex, race,
149	duration of diabetes and blood glucose control was explored by adding an interaction term to our
150	logistic regression models. A p-value <0.10 for the interaction term was considered statistically
151	significant.

152 Variation in 25(OH)D concentrations explained by dietary intake of vitamin D was estimated using linear regression with season-adjusted 25(OH)D concentrations as the dependent 153 variable and dietary vitamin D intake as the independent variable. Adjusted ORs and 95% CIs 154 for retinopathy in quartiles 2 through 4 (with quartile 1 as the referent) for dietary vitamin D 155 intake (IU/day) and by category of reported frequency of consumption of vitamin D rich foods 156 (never consumers as the referent) were estimated. A p for trend using continuous vitamin D 157 intake or frequency of consumption, respectively, was estimated. We also estimated the odds of 158 retinopathy in those who reported using vitamin D or fish oil supplements. 159

160 **RESULTS**

Seven percent of participants had deficient vitamin D status (25[OH]D<30 nmol/L) and 59% and 16% had adequate status with 25(OH)D concentrations \geq 50 and \geq 75 nmol/L, respectively (**Table 1**). Participants with adequate (\geq 75 nmol/L) compared to deficient vitamin D status were less likely to have retinopathy, be women, be from Jackson, MS, and have graduated high school, and they were more likely to be older and Caucasian. There was a greater proportion of former (compared to never or current) smokers with adequate versus deficient

167	status. Individuals with adequate status had greater vitamin D intake, smaller waist
168	circumferences, were less likely to be obese, and more likely to be physical active. On average
169	their systolic blood pressure, HDL, glucose, and HBA1c were lower, and their hematocrit and
170	triglycerides were higher. Those with adequate status were also less likely to have used insulin in
171	the last two weeks.
172	Of the 1,339 diabetic participants, 21% (n=280) had DR. In crude analyses, individuals
173	with 25(OH)D concentrations 50 to < 75 and \geq 75 nmol/L had lower odds of retinopathy than
174	deficient individuals (Table 2). Only adjustment for race and duration of diabetes changed the
175	odds ratio greater than 10% and were included in the multivariable model. Adjustment for age
176	had no additional influence on the model and thus was not adjusted for in these analyses. After
177	adjustment for these covariates there was a significant 61% lower odds of retinopathy for those
178	with 25(OH)D concentrations \geq 75 nmol/L, with a significant p for trend of 0.001 and a 13%
179	lower odds of retinopathy with each additional 10 nmol/L in serum 25(OH)D concentrations.
180	Further adjustment for HBA_{1c} attenuated the association, but did not remove statistical
181	significance. The odds of participants having proliferative diabetic retinopathy or macular edema
182	among those with $25(OH)D \ge 50 \text{ nmol/L}$ (19 out of 789 at risk) compared to those with
183	25(OH)D < 50 nmol/L (12 out of 550 at risk) was 1.48 (0.70-3.12) adjusted for race, duration,
184	HBA _{1c} and hypertension status. The adjusted odds ratio per 10 nmol/L difference in 25(OH)D
185	was 1.07 (0.89-1.29), p for trend==0.473.
186	The observed lower odds of retinopathy among participants with adequate compared to
187	deficient vitamin D status remained regardless of age, sex, race, duration of diabetes and
188	glycemic control, except for observations in the youngest age group (54 years and younger)
189	(Table 3). There were not statistically significant interactions. A sensitivity analysis removing

190	participants who were not classified as having diabetes at visit 2 (n=336), when 25(OH)D
191	concentrations were measured, did not substantially change the main findings. The odds of
192	retinopathy in participants with 25(OH)D \geq 75 compared to <30 nmol/L was 0.43 (0.21-0.88), p
193	for trend=0.005 after adjustment for race and duration and 0.54 (0.25-1.15), p for trend=0.055
194	with further adjustment for HBA_{1c} and hypertension status.
195	Dietary vitamin D intake of vitamin D from foods accounted for 1% of the between
196	person variation in 25(OH)D concentrations in this sample. No statistically significant
197	associations were found between vitamin D intake from foods and retinopathy (eTable 1).
198	Intake of 1 serving (3-5 ounces) of dark fish >1/week compared to never was associated with a
199	68% lower odds of retinopathy with a p for continuous trend of 0.060. Further adjustment by
200	intake of Ω -3 polyunsaturated fatty acids (PUFAs) did not attenuate this association (data not
201	shown). The odds of retinopathy among vitamin D and fish oil supplement users compared to

nonusers was 0.63 (0.25-1.64) with adjustment for race, duration of diabetes, HBA_{1c} , and

203 hypertension status.

204 **DISCUSSION**

We observed a dose-response association between 25(OH)D concentrations and diabetic 205 retinopathy, suggesting that individuals with higher 25(OH)D concentrations have lower odds of 206 prevalent retinopathy, primarily NPDR. No statistically significant association was observed 207 between 25(OH)D and severe disease (PDR or macular edema) although the number of cases 208 was small (n=31). A protective association with intake of vitamin D from all foods combined 209 was not observed. Assessment of dietary vitamin D intake does not likely reflect or enhance 210 vitamin D status as we found vitamin D intake only explained a minimal amount of the between 211 212 person variation in 25(OH)D concentrations in this sample. We did observe that frequent

consumption (>1 time per week) of dark fish compared to never eating this type of fish was
associated with a decreased odds for retinopathy. Fish are a rich source of vitamin D as well as
Ω -3 PUFAs (eicosapentaenoic and docosahexaenoice acid). Ω -3 have anti-inflammatory
properties (41), but adjustment for intake of Ω -3 PUFAs did not confound this association.
Previous research on the association between vitamin D status and diabetic retinopathy
has predominantly focused on samples of individuals with type 2 diabetes (3-8, 11-16, 18),
similar to ARIC, with some research focused on individuals with type 1 diabetes (9, 10, 17, 19).
A number of studies have compared groups of patients with diabetes to healthy controls,
examining 25(OH)D concentrations between those with and without diabetes and by prevalent
microvascular complications among those with diabetes (3, 5, 11, 13, 14, 16, 19). Evidence of a
protective association of 25(OH)D on prevalent retinopathy was found in three studies (3, 5, 11).
Limitations of these case-control studies include selection of individuals with diabetes from
clinic settings, small sample sizes ($n \le 150$ for samples of individuals with diabetes) (5, 11, 13, 14,
16), lack of multivariate adjusted analysis (13, 16), possible overadjustment for strong
determinants of 25(OH)D concentrations and covariates in the causal pathway (19), and

assessment of retinopathy status from ophthalmologist examination rather than from

standardized grading of retinal fundus photographs (3, 5, 11, 13, 14, 16).

Results from cross-sectional studies using nationally representative surveys or cohorts have generally suggested consistent protective associations between retinopathy status and 25(OH)D in individuals with type 1 (9, 10) and 2 diabetes (4, 6). Recent cross-sectional clinicbased studies also support protective associations between 25(OH)D concentrations and diabetic retinopathy (12, 18). Strengths of these studies include the use of graded, retinal photos (4, 6, 9, 10), adjustment for other confounding factors, and with the exception of a few (10, 18), were

236	relatively large (~500+ participants). These cross-sectional studies cannot establish temporality
237	of the vitamin D and retinopathy association, similar to the present study.

238	Only three studies to date have examined prospective associations between vitamin D
239	status and risk of retinopathy (8, 15, 17). No statistically significant association was observed
240	between 25(OH)D concentrations and the 26-year incidence of either background or proliferative
241	retinopathy among 220 patients with type 1 diabetes attending a diabetes center (17) or with the
242	5-year incidence or progression of retinopathy in the Veterans Affairs Diabetes Trial (n=955)
243	(15). A recent study of 9,524 participants with type 2 diabetes from the Fenofibrate intervention
244	and Event Lowering Diabetes (FIELD) Trial were followed for development microvascular
245	complications, including retinopathy determined by on-study laser treatment (not fundus
246	photography). (8) They observed a significant 13% (p=0.03) lower odds of microvascular
247	complications with each baseline 50 nmol/L difference in 25(OH)D. Further adjustment of the
248	multivariable model for HBA _{1c} , physical activity or seasonal variability attenuated the
249	association and removed its statistical significance. In our study, the association between
250	vitamin D status and retinopathy was also attenuated after adjustment for glycemic control. It is
251	unclear whether adjustment for HBA _{1c} confounds the observed association or results in over
252	adjustment because vitamin D protects against retinopathy via its influence on glycemic control.
253	Vitamin D is proposed to have a role in ocular health. Expression of the vitamin D
254	receptor (VDR) in the retina (42) and in human cultured retinal endothelial cells (43), support
255	this hypothesis. Further, the enzyme 1- α -hydroxylase, responsible for synthesis of 1,25(OH) ₂ D,
256	is expressed in the retina suggesting a local action of the hormone calcitriol $(1,25(OH)_2D)$ in the
257	eye (42).

258	We propose vitamin D may help ameliorate the inflammatory state that is hypothesized to
259	promote retinopathy (21, 44). In vitro studies (45) and animal models of diabetes (46) suggest
260	that chronic low grade inflammation plays a role in the development of diabetic retinopathy.
261	Vitreous concentrations of cytokines have been found to be higher in patients with proliferative
262	retinopathy compared to persons without retinopathy (47) although evidence of associations
263	between biomarkers of systemic inflammation and diabetic retinopathy in epidemiologic studies
264	still remains inconclusive (48). The state of high blood glucose found in individuals with
265	diabetes is thought to increase adhesion of leukocytes to microvascular endothelial cells leading
266	to cell damage and impaired blood flow (46, 49) and consequential retinopathy lesions (50, 51).
267	We hypothesize that vitamin D may down regulate a localized, ocular, pro-inflammatory state of
268	retinopathy by suppressing pro-inflammatory cytokines and other toxic agents, as in vitro studies
269	suggest (52-54). This is supported by data showing that cells of the human immune system
270	express VDR (20) and a study in cultured endothelial cells showing that vitamin D reduces the
271	damaging effects of AGEs, thought to induce an inflammatory response (55).
272	The VDR is expressed in human pancreatic beta-cells (56) and the human insulin
273	receptor gene's promoter has a vitamin D response element (57), suggesting a possible role in
274	blood glucose control, however both in vitro studies cell cultures and in vivo studies of animal
275	model of diabetes examining the effect of $1,25(OH)_2D$ on beta cell function, insulin receptor
276	gene expression, and glucose uptake are inconclusive (58). A recent meta-analysis suggests no
277	association between randomized controlled vitamin D supplementation trials in humans and
278	glucose homeostasis or diabetes prevention, however this study could not make conclusions with
279	respect to the effect of long-term supplementation and micro- or macro-vascular complications
280	of diabetes (59).

281	Our study is limited by its cross-sectional design and the availability of retinal
282	photographs taken of one field from only one eye. There may be misclassification of endpoints
283	ascertained at visit 3. However, as the photographed eye was chosen randomly, we would expect
284	nondifferential misclassification of our endpoint which would bias our observed risk estimates
285	toward the null. We also could not adequately explore the association between vitamin D and
286	proliferative retinopathy due to the small number of participants with this outcome. Vitamin D
287	has been shown to inhibit angiogenesis in an animal model of oxygen-induced ischemic
288	retinopathy (60) and inhibit vascular endothelial growth factor and transforming growth factor- β_1
289	expression in retinal tissues of experimentally induced diabetes in rats (61).
290	Our study's strength include a well-defined population of individuals with diabetes and
291	availability of numerous, measured covariates that we could adjust for as potential confounding
292	factors, although we realize that residual confounding may exist. Our study was population-
293	based making it generalizable to the population of individuals with diabetes residing in the four
294	geographic areas in which the ARIC study was conducted. However, our results are most
295	generalizable to individuals with type 2 diabetes who comprised the majority of our sample. We
296	were able to examine this association in both Caucasians and African Americans, showing that
297	associations did not vary by race. We had retinal photographs, graded in a standardized fashion,
298	to assess retinopathy and 25(OH)D and assessed using LC-MS, the gold standard for vitamin D
299	assessment (62), with standardized, quality control measures taken. Our study contributes to the
300	body of evidence supporting a protective, association between 25(OH)D and prevalent diabetic

301 retinopathy that is consistent across racial groups. In conclusion, adequate vitamin D status,

302 25(OH)D concentrations \geq 75 nmol/L, may be associated with reduced odds of diabetic

- 303 retinopathy. The influence of vitamin D on diabetic retinopathy may be, in part, via its influence
- 304 on blood glucose control.

ACKNOWLDEGMENTS

- 307 We would like to acknowledge Elizabeth Selvin, PhD at Johns Hopkins Bloomberg School of
- 308Public Health for providing data on HbA1c.
- 309

306

310 FINANCIAL DISCLOSURE(S)/CONFLICT(S) OF INTEREST

- 311 Kristin Meyers' affiliation was with the University of Wisconsin during her efforts on this
- manuscript. As of February 2015, she has been an employee of Eli Lilly and Company and her
- 313 efforts on this manuscript have been limited to critical review. Other co-authors had not
- 314 conflicts of interest to disclose.
- 315

316 AUTHORS' CONTRIBUTIONS

- 317 Dr. Amy Millen had full access to all of the data in the study and takes primary
- 318 responsibility for the final content of this manuscript.
- 319 Contribution of authors: AEM, MJL, PLL, JAM, BEKK, KJM, CAA, RK designed the
- 320 research study. AEM directed analyses with MWS and JN conducting the analyses and aiding in
- 321 data interpretation. AEM and MWS wrote the primary manuscript, with all co-authors aiding in
- 322 the interpretation of the data analysis and drafting of the manuscript. All authors read and
- 323 approved the final manuscript.

Reference to prior publication of the study in abstract form:

- This work was previously presented as a poster at the 74th American Diabetes Association
- 325 Conference in 2013, San Francisco, CA, June 13-17, 2014.

REFERENCES

- 1. American Academy of Ophthalmology. *Preferred Practice Pattern: Diabetic Retinopathy.* San Francisco, Calif: American Academy of Ophthalmology; 2008.
- Mares JA, Millen AE, Meyers KJ. Diet and Supplements in the Prevention and Treatment of Eye Diseases. Edition ed. In: Coulston AM, Boushey CJ, Ferruzzi MG, eds. Nutrition in the Prevention and Treatment of Disease. Waltham, Massachusetts: Elsevier Academic Press, 2013:341-71.
- 3. Suzuki A, Kotake M, Ono Y, Kato T, Oda N, Hayakawa N, Hashimoto S, Itoh M. Hypovitaminosis D in type 2 diabetes mellitus: Association with microvascular complications and type of treatment. Endocrine journal 2006;53(4):503-10.
- 4. Patrick PA, Visintainer PF, Shi Q, Weiss IA, Brand DA. Vitamin D and retinopathy in adults with diabetes mellitus. Archives of ophthalmology 2012;130(6):756-60. doi: 10.1001/archophthalmol.2011.2749.
- Ahmadieh H, Azar ST, Lakkis N, Arabi A. Hypovitaminosis d in patients with type 2 diabetes mellitus: a relation to disease control and complications. ISRN endocrinology 2013;2013:641098. doi: 10.1155/2013/641098.
- 6. He R, Shen J, Liu F, Zeng H, Li L, Yu H, Lu H, Lu F, Wu Q, Jia W. Vitamin D deficiency increases the risk of retinopathy in Chinese patients with type 2 diabetes. Diabet Med 2014;31(12):1657-64. doi: 10.1111/dme.12581.
- Jee D, Han K, Kim EC. Inverse association between high blood 25-hydroxyvitamin D levels and diabetic retinopathy in a representative Korean population. PloS one 2014;9(12):e115199. doi: 10.1371/journal.pone.0115199.
- 8. Herrmann M, Sullivan DR, Veillard AS, McCorquodale T, Straub IR, Scott R, Laakso M, Topliss D, Jenkins AJ, Blankenberg S, et al. Serum 25-hydroxyvitamin D: a predictor of macrovascular and microvascular complications in patients with type 2 diabetes. Diabetes care 2015;38(3):521-8. doi: 10.2337/dc14-0180.
- Kaur H, Donaghue KC, Chan AK, Benitez-Aguirre P, Hing S, Lloyd M, Cusumano J, Pryke A, Craig ME. Vitamin D deficiency is associated with retinopathy in children and adolescents with type 1 diabetes. Diabetes care 2011;34(6):1400-2. doi: 10.2337/dc11-0103.
- Shimo N, Yasuda T, Kaneto H, Katakami N, Kuroda A, Sakamoto F, Takahara M, Irie Y, Horikawa K, Miyashita K, et al. Vitamin D deficiency is significantly associated with retinopathy in young Japanese type 1 diabetic patients. Diabetes research and clinical practice 2014;106(2):e41-3. doi: 10.1016/j.diabres.2014.08.005.
- Alcubierre N, Valls J, Rubinat E, Cao G, Esquerda A, Traveset A, Granado-Casas M, Jurjo C, Mauricio D. Vitamin D Deficiency Is Associated with the Presence and Severity of Diabetic Retinopathy in Type 2 Diabetes Mellitus. Journal of diabetes research 2015;2015:374178. doi: 10.1155/2015/374178.
- 12. Zoppini G, Galletti A, Targher G, Brangani C, Pichiri I, Trombetta M, Negri C, De Santi F, Stoico V, Cacciatori V, et al. Lower levels of 25-hydroxyvitamin D3 are associated with a higher prevalence of microvascular complications in patients with type 2 diabetes. BMJ Open Diabetes Res Care 2015;3(1):e000058. doi: 10.1136/bmjdrc-2014-000058.
- 13. Aksoy H, Akcay F, Kurtul N, Baykal O, Avci B. Serum 1,25 dihydroxy vitamin D (1,25(OH)2D3), 25 hydroxy vitamin D (25(OH)D) and parathormone levels in diabetic retinopathy. Clinical biochemistry 2000;33(1):47-51.
- 14. Payne JF, Ray R, Watson DG, Delille C, Rimler E, Cleveland J, Lynn MJ, Tangpricha V, Srivastava SK. Vitamin D insufficiency in diabetic retinopathy. Endocrine practice : official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists 2012;18(2):185-93. doi: 10.4158/EP11147.OR.
- 15. Alele JD, Luttrell LM, Hollis BW, Luttrell DK, Hunt KJ, Group VS. Relationship between vitamin D status and incidence of vascular events in the Veterans Affairs Diabetes Trial. Atherosclerosis 2013;228(2):502-7. doi: 10.1016/j.atherosclerosis.2013.03.024.
- Bajaj S, Singh RP, Dwivedi NC, Singh K, Gupta A, Mathur M. Vitamin D levels and microvascular complications in type 2 diabetes. Indian journal of endocrinology and metabolism 2014;18(4):537-41. doi: 10.4103/2230-8210.137512.
- 17. Joergensen C, Hovind P, Schmedes A, Parving HH, Rossing P. Vitamin d levels, microvascular complications, and mortality in type 1 diabetes. Diabetes care 2011;34(5):1081-5.

- 18. Bonakdaran S, Shoeibi N. Is there any correlation between vitamin D insufficiency and diabetic retinopathy? International journal of ophthalmology 2015;8(2):326-31. doi: 10.3980/j.issn.2222-3959.2015.02.20.
- Engelen L, Schalkwijk CG, Eussen SJ, Scheijen JL, Soedamah-Muthu SS, Chaturvedi N, Fuller JH, Stehouwer CD. Low 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 levels are independently associated with macroalbuminuria, but not with retinopathy and macrovascular disease in type 1 diabetes: the EURODIAB prospective complications study. Cardiovasc Diabetol 2015;14:67. doi: 10.1186/s12933-015-0231-2.
- 20. Mora JR, Iwata M, von Andrian UH. Vitamin effects on the immune system: vitamins A and D take centre stage. Nature reviews Immunology 2008;8(9):685-98. doi: 10.1038/nri2378.
- 21. Kern TS. Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Experimental diabetes research 2007;2007:95103.
- 22. Feneis JF, Arora RR. Role of vitamin D in blood pressure homeostasis. American journal of therapeutics 2010;17(6):e221-9. doi: 10.1097/MJT.0b013e3181d16999.
- 23. Mitri J, Pittas AG. Vitamin D and diabetes. Endocrinology and metabolism clinics of North America 2014;43(1):205-32. doi: 10.1016/j.ecl.2013.09.010.
- 24. Matthews DR, Stratton IM, Aldington SJ, Holman RR, Kohner EM. Risks of progression of retinopathy and vision loss related to tight blood pressure control in type 2 diabetes mellitus: UKPDS 69. Archives of ophthalmology 2004;122(11):1631-40.
- 25. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. The New England journal of medicine 1993;329(14):977-86.
- 26. The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC investigators. American journal of epidemiology 1989;129(4):687-702.
- 27. Klein R, Clegg L, Cooper LS, Hubbard LD, Klein BE, King WN, Folsom AR. Prevalence of age-related maculopathy in the Atherosclerosis Risk in Communities Study. Archives of ophthalmology 1999;117(9):1203-10.
- 28. Grading diabetic retinopathy from stereoscopic color fundus photographs--an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 1991;98(5 Suppl):786-806.
- 29. Folsom AR, Roetker NS, Rosamond WD, Heckbert SR, Basu S, Cushman M, Lutsey PL. Serum 25hydroxyvitamin D and risk of venous thromboembolism: the Atherosclerosis Risk in Communities (ARIC) Study. Journal of thrombosis and haemostasis : JTH 2014;12(9):1455-60. doi: 10.1111/jth.12665.
- 30. SAS Institute Inc. 2008. SAS/STAT® 9.2 *User's Guide*. The LOESS Procedure (Book Excerpt). Cary, NC: SAS Institute Inc. http://support.sas.com/documentation/cdl/en/statugloess/61801/PDF/default/statugloess.pdf (Accessed

http://support.sas.com/documentation/cdl/en/statugloess/61801/PDF/default/statugloess.pdf (Accessed January 7, 2015).

- Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, Hennekens CH, Speizer FE. Reproducibility and validity of a semiquantitative food frequency questionnaire. American journal of epidemiology 1985;122(1):51-65.
- 32. Stevens J, Metcalf P, Dennis B, Tell G, Shimakawa T, Folsom AR. Reliability of a food frequency questionnaire by ethnicity, gender, age and education Nutrition Research 1996;16(5):735-45.
- 33. Atherosclerosis Risk in Communities (ARIC) Study Research Group. Manual 7 Blood Collection. In. Chapell Hill, NC: Atherosclerosis Risk in Communities (ARIC) Study Research Group; 1990.
- 34. Selvin E, Steffes MW, Gregg E, Brancati FL, Coresh J. Performance of A1C for the classification and prediction of diabetes. Diabetes care 2011;34(1):84-9. doi: 10.2337/dc10-1235.
- 35. Atherosclerosis Risk in Communities (ARIC) Study Research Group. Manual 8 Lipid and Lipoprotein Determinations. In. Chapell Hill, NC: Atherosclerosis Risk in Communities (ARIC) Study Research Group; 1991. .
- 36. Baecke JA, Burema J, Frijters JE. A short questionnaire for the measurement of habitual physical activity in epidemiological studies. The American journal of clinical nutrition 1982;36(5):936-42.
- 37. Pols MA, Peeters PH, Bueno-De-Mesquita HB, Ocke MC, Wentink CA, Kemper HC, Collette HJ. Validity and repeatability of a modified Baecke questionnaire on physical activity. International journal of epidemiology 1995;24(2):381-8.

- Richardson MT, Ainsworth BE, Wu HC, Jacobs DR, Jr., Leon AS. Ability of the Atherosclerosis Risk in Communities (ARIC)/Baecke Questionnaire to assess leisure-time physical activity. International journal of epidemiology 1995;24(4):685-93.
- 39. IOM (Institute of Medicine). 2011. Summary. In: *Dietary Reference Intakes for Calcium and Vitamin D*. Washington DC: The National Academy Press: Page 1-14.
- 40. Heinze G, Schemper M. A solution to the problem of separation in logistic regression. Stat Med 2002;21(16):2409-19. doi: 10.1002/sim.1047.
- 41. Chapkin RS, Kim W, Lupton JR, McMurray DN. Dietary docosahexaenoic and eicosapentaenoic acid: emerging mediators of inflammation. Prostaglandins, leukotrienes, and essential fatty acids 2009;81(2-3):187-91. doi: 10.1016/j.plefa.2009.05.010.
- 42. Alsalem JA, Patel D, Susarla R, Coca-Prados M, Bland R, Walker EA, Rauz S, Wallace GR. Characterization of vitamin D production by human ocular barrier cells. Investigative ophthalmology & visual science 2014;55(4):2140-7. doi: 10.1167/iovs.13-13019.
- 43. Choi D, Appukuttan B, Binek SJ, Planck SR, Stout JT, Rosenbaum JT, Smith JR. Prediction of Cis-Regulatory Elements Controlling Genes Differentially Expressed by Retinal and Choroidal Vascular Endothelial Cells. Journal of ocular biology, diseases, and informatics 2008;1(1):37-45.
- 44. Joussen AM, Poulaki V, Le ML, Koizumi K, Esser C, Janicki H, Schraermeyer U, Kociok N, Fauser S, Kirchhof B, et al. A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2004;18(12):1450-2. doi: 10.1096/fj.03-1476fje.
- 45. Moore TC, Moore JE, Kaji Y, Frizzell N, Usui T, Poulaki V, Campbell IL, Stitt AW, Gardiner TA, Archer DB, et al. The role of advanced glycation end products in retinal microvascular leukostasis. Investigative ophthalmology & visual science 2003;44(10):4457-64.
- 46. Schroder S, Palinski W, Schmid-Schonbein GW. Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. The American journal of pathology 1991;139(1):81-100.
- 47. Adamiec-Mroczek J, Oficjalska-Mlynczak J, Misiuk-Hojlo M. Roles of endothelin-1 and selected proinflammatory cytokines in the pathogenesis of proliferative diabetic retinopathy: Analysis of vitreous samples. Cytokine 2010;49(3):269-74.
- 48. Rajab HA, Baker NL, Hunt KJ, Klein R, Cleary PA, Lachin J, Virella G, Lopes-Virella MF, Investigators DEGo. The predictive role of markers of Inflammation and endothelial dysfunction on the course of diabetic retinopathy in type 1 diabetes. Journal of diabetes and its complications 2015;29(1):108-14. doi: 10.1016/j.jdiacomp.2014.08.004.
- 49. Chibber R, Ben-Mahmud BM, Chibber S, Kohner EM. Leukocytes in diabetic retinopathy. Current diabetes reviews 2007;3(1):3-14.
- 50. Stitt AW. AGEs and diabetic retinopathy. Investigative ophthalmology & visual science;51(10):4867-74.
- 51. Yamagishi S, Ueda S, Matsui T, Nakamura K, Okuda S. Role of advanced glycation end products (AGEs) and oxidative stress in diabetic retinopathy. Current pharmaceutical design 2008;14(10):962-8.
- 52. Lefebvre d'Hellencourt C, Montero-Menei CN, Bernard R, Couez D. Vitamin D3 inhibits proinflammatory cytokines and nitric oxide production by the EOC13 microglial cell line. J Neurosci Res 2003;71(4):575-82.
- 53. D'Ambrosio D, Cippitelli M, Cocciolo MG, Mazzeo D, Di Lucia P, Lang R, Sinigaglia F, Panina-Bordignon P. Inhibition of IL-12 production by 1,25-dihydroxyvitamin D3. Involvement of NF-kappaB downregulation in transcriptional repression of the p40 gene. J Clin Invest 1998;101(1):252-62.
- 54. Evans KN, Nguyen L, Chan J, Innes BA, Bulmer JN, Kilby MD, Hewison M. Effects of 25hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 on cytokine production by human decidual cells. Biology of reproduction 2006;75(6):816-22.
- 55. Talmor Y, Golan E, Benchetrit S, Bernheim J, Klein O, Green J, Rashid G. Calcitriol blunts the deleterious impact of advanced glycation end products on endothelial cells. American journal of physiology 2008;294(5):F1059-64.
- 56. Johnson JA, Grande JP, Roche PC, Kumar R. Immunohistochemical localization of the 1,25(OH)2D3 receptor and calbindin D28k in human and rat pancreas. The American journal of physiology 1994;267(3 Pt 1):E356-60.
- 57. Maestro B, Davila N, Carranza MC, Calle C. Identification of a Vitamin D response element in the human insulin receptor gene promoter. The Journal of steroid biochemistry and molecular biology 2003;84(2-3):223-30.

- 58. Mathieu C. Vitamin D and diabetes: Where do we stand? Diabetes research and clinical practice 2015;108(2):201-9. doi: 10.1016/j.diabres.2015.01.036.
- 59. Seida JC, Mitri J, Colmers IN, Majumdar SR, Davidson MB, Edwards AL, Hanley DA, Pittas AG, Tjosvold L, Johnson JA. Clinical review: Effect of vitamin D3 supplementation on improving glucose homeostasis and preventing diabetes: a systematic review and meta-analysis. The Journal of clinical endocrinology and metabolism 2014;99(10):3551-60. doi: 10.1210/jc.2014-2136.
- 60. Albert DM, Scheef EA, Wang S, Mehraein F, Darjatmoko SR, Sorenson CM, Sheibani N. Calcitriol is a potent inhibitor of retinal neovascularization. Investigative ophthalmology & visual science 2007;48(5):2327-34.
- 61. Ren Z, Li W, Zhao Q, Ma L, Zhu J. The impact of 1,25-dihydroxy vitamin D3 on the expressions of vascular endothelial growth factor and transforming growth factor-beta(1) in the retinas of rats with diabetes. Diabetes research and clinical practice 2012;98(3):474-80. doi: 10.1016/j.diabres.2012.09.028.
- 62. Ziegler TE, Kapoor A, Hedman CJ, Binkley N, Kemnitz JW. Measurement of 25-hydroxyvitamin D(2&3) and 1,25-dihydroxyvitamin D(2&3) by tandem mass spectrometry: A primate multispecies comparison. American journal of primatology 2015;77(7):801-10. doi: 10.1002/ajp.22403.

		Vitamin D status defined by serum 25(OH)D concentrations (nmol/L)				p-value	r (p-value) [‡]
	Ν	<30 Deficient n=96 (7%)	30 to <50 Inadequate n=454 (34%)	50 to < 75 Adequate n=577 (43%)	≥75 Adequate n=212 (16%)		
Season-adjusted serum 25(OH)D, mean (SD)	1339	24.5 (4.9)	41.7 (5.5)	61.2 (6.9)	88.6 (15.2)	< 0.001	NA
Prevalence of retinopathy, n (% yes)	280	28 (29.2%)	111 (24.4%)	115 (19.9%)	26 (12.3%)	< 0.001	ş
Severity of retinopathy, n (%)						0.005	ş
None	1059	68 (70.8%)	343 (75.6%)	462 (80.1%)	186 (87.7%)		
Mild NPDR	207	22 (22.9%)	82 (18.1%)	88 (15.3%)	15 (7.1%)		
Moderate/severe NPDR	44	3 (3.1%)	21 (4.6%)	15 (2.6%)	5 (2.4%)		
Proliferative DR	29	3 (3.1%)	8 (1.8%)	12 (2.1%)	6 (2.8%)		
Demographics							
Age (years), mean (SD)	1339	56.4 (5.7)	57.0 (5.6)	57.7 (5.6)	57.9 (5.5)	0.046	0.08 (0.003
Sex, n (% women)	710	78 (81.3%)	293 (64.5%)	254 (44.0%)	85 (40.1%)	< 0.001	`§
Race, n (% Caucasians)	906	38 (39.6%)	249 (54.8%)	428 (74.2%)	191 (90.1%)	< 0.001	ş
Field center, n (%)						< 0.001	ş
Forsyth County, NC	308	20 (20.8%)	92 (20.3%)	136 (23.6%)	60 (28.3%)		
Jackson, MS	374	50 (52.1%)	168 (37.0%)	137 (23.7%)	19 (9.0%)		
Minneapolis, MN	286	14 (14.6%)	83 (18.3%)	136 (23.6%)	53 (25.0%)		
Washington County, MD	371	12 (12.5%)	111 (24.4%)	168 (29.1%)	80 (37.7%)		
Education , n (%) - visit 1						0.025	Ş
Basic or 0 years	370	25 (26.0%)	126 (27.9%)	154 (26.7%)	65 (30.7%)		
Intermediate	559	34 (35.4%)	193 (42.8%)	230 (39.9%)	102 (48.1%)		
Advanced	407	37 (38.5%)	132 (29.3%)	193 (33.4%)	45 (21.2%)		
Health and Lifestyle Characteristics							
Duration of diabetes, n (%) - visit 3						0.572	ş
<3 years	300	26 (27.1%)	89 (19.6%)	131 (22.7%)	54 (25.5%)		
3 to 6 years	293	18 (18.8%)	106 (23.3%)	125 (21.7%)	44 (20.8%)		
≥6 years	746	52 (54.2%)	259 (57.0%)	321 (55.6%)	114 (53.8%)		
Smoking status, n (%)						0.034	ş
Current	257	21 (21.9%)	97 (21.5%)	105 (18.2%)	34 (16.0%)		
Former	535	30 (31.3%)	168 (37.2%)	232 (40.2%)	105 (49.5%)		
Never	545	45 (46.9%)	187 (41.4%)	240 (41.6%)	73 (34.4%)		

		Vitamin D st	Vitamin D status defined by serum 25(OH)D concentrations (nmol/L)				
	Ν	<30 Deficient n=96 (7%)	30 to <50 Inadequate n=454 (34%)	50 to < 75 Adequate n=577 (43%)	≥75 Adequate n=212 (16%)		
Vitamin D intake (IU/day), mean (SD) - visit 1	1305	164.2 (117.3)	232.5 (154.4)	239.7 (151.7)	261.8 (147.4)	< 0.001	0.16 (<0.001)
Vitamin D supplement, n (% yes) - Visit 3	23	0 (0.0%)	8 (1.8%)	9 (1.6%)	6 (2.8%)	0.352	\$
Fish oil supplement use, n (% yes) - Visit 3 Drinking status, n (%)	31	0 (0.0%)	13 (2.9%)	12 (2.1%)	6 (2.8%)	0.362 0.056	\$ \$
Current	616	37 (38.5%)	191 (42.2%)	277 (48.0%)	111 (52.4%)	0.020	
Former	364	24 (25.0%)	131 (28.9%)	155 (26.9%)	54 (25.5%)		
Never	358	35 (36.5%)	131 (28.9%)	145 (25.1%)	47 (22.2%)		
Waist circumference (cm), mean (SD)	1337	112.2 (15.5)	109.2 (15.8)	106.9 (13.2)	102.9 (12.5)	< 0.001	-0.16 (<0.00
BMI category (kg/m ²), n (%)		× ,		· · · ·		< 0.001	-0.19 (<0.00
Under/normal weight ($<25 \text{ kg/m}^2$)	164	6 (6.3%)	45 (10.0%)	70 (12.2%)	43 (20.4%)		× ×
Overweight $(25-30 \text{ kg/m}^2)$	427	24 (25.0%)	135 (29.9%)	182 (31.6%)	86 (40.8%)		
Obese $(\geq 30 \text{ kg/m}^2)$	744	66 (68.8%)	272 (60.2%)	324 (56.3%)	82 (38.9%)		
Composite physical activity index - visit 1, mean (SD)	1335	2.2 (1.4)	2.7 (1.5)	3.0 (1.5)	3.3 (1.4)	< 0.001	0.20 (<0.00
Average diastolic blood pressure (mm Hg), mean (SD)	1339	73.3 (9.3)	73.4 (11.3)	72.7 (10.3)	72.1 (9.5)	0.435	-0.03 (0.238
Average systolic blood pressure (mm Hg), mean (SD)	1339	127.9 (19.4)	129.0 (20.4)	126.0 (18.6)	125.1 (16.9)	0.028	-0.07 (0.008
Hypertension [¶] , n (% yes)	738	56 (58.3%)	258 (56.8%)	317 (54.9%)	107 (50.5%)	0.424	ş
Hematocrit (%), mean (SD)	1333	39.7 (4.2)	40.6 (3.8)	41.7 (3.7)	41.9 (3.4)	< 0.001	0.17 (<0.00
Fotal cholesterol (mg/dL), mean (SD)	1337	213.8 (38.0)	210.2 (40.5)	213.6 (41.9)	212.8 (42.5)	0.586	0.02 (0.400
HDL (mg/dL), mean (SD)	1336	44.7 (12.0)	44.2 (14.4)	41.0 (13.4)	42.6 (14.2)	0.001	-0.09 (0.00
LDL (mg/dL), mean (SD)	1279	138.8 (36.0)	133.2 (35.0)	135.5 (36.6)	133.9 (37.5)	0.504	0.01 (0.66
Friglycerides (mg/dL), mean (SD)	1336	155.3 (82.2)	166.2 (98.3)	192.0 (132.0)	182.7 (104.9)	< 0.001	0.08 (0.004
Glucose (mg/dL), mean (SD)	1339	184.2 (89.5)	177.6 (76.6)	171.6 (74.7)	156.1 (62.3)	0.002	-0.11 (<0.00
Glycosylated hemoglobin (%), mean (SD)	1339	7.8 (2.1)	7.7 (2.1)	7.4 (1.9)	6.9 (1.6)	< 0.001	-0.14 (<0.00
Insulin use in the past 2 weeks, n (% yes)	192	16 (16.7%)	81 (17.8%)	70 (12.1%)	25 (11.8%)	0.039	ş

Table 1: Characteristics^{*} by vitamin D status of Caucasian and African American ARIC study participants classified as having diabetes[†] with gradable eve

* Characteristics assessed at visit 2 unless otherwise noted. † Individuals with diabetes were participants who had one of the following: 1) an 8 hour fasting glucose \geq 126 mg/dL, 2) a non- fasting glucose \geq 200 mg/dL, 3) use of diabetes medication in the past 2 weeks, or 4) self-reported being told by a doctor that they had diabetes.

Table 1: Characteristics^{*} by vitamin D status of Caucasian and African American ARIC study participants classified as having diabetes,[†] with gradable eye photo at visit 3 (1993-95), and available serum 25(OH)D concentrations at visit 2 (1990-92) (N=1339)

	Vitamin D st	tatus defined by s (nm	erum 25(OH)D c ol/L)	oncentrations	p-value	r (p-value) [‡]
Ν	<30 Deficient n=96 (7%)	30 to <50 Inadequate n=454 (34%)	50 to < 75 Adequate n=577 (43%)	≥75 Adequate n=212 (16%)		
[‡] Spearman correlation coefficient and associated p-value for variable. [§] Correlation coefficient not presented because characteristic			djusted serum 25(OH)D and the res	spective con	tinuous

^{\parallel} Education defined as Basic or 0 years (≤ 11 years or less, i.e., high school with no degree or less), Intermediate (12-16 years, i.e., high school graduate or vocational school), Advanced (17-21 years, i.e., college or higher).

[¶]Average systolic blood pressure \geq 140 mm Hg, or diastolic \geq 90 mm Hg, or high blood pressure medication use in the past 2 weeks.

Table 2: Crude and adjusted OR and 95% CIs for the diabetic retinopathy by vitamin D status among Caucasian and African American ARIC study participants classified as having diabetes and having gradable eye photos at visit 3 (1993-95), and available serum 25(OH)D concentrations at visit 2 (1990-92) (N=1339)

Model		Vitamin D status defined by serum 25(OH)D concentrations (nmol/L)								
	<30 Deficient	30 to <50 Inadequate	50 to < 75 Adequate	≥75 Adequate	p-trend*	Continuous, Per 10 nmol/L				
# with retinopathy / # in category	28/96	111/454	115/577	26/212						
Crude Model	1	0.79 (0.48-1.28)	0.61 (0.37-0.98)	0.34 (0.19-0.62)	< 0.001	0.85 (0.79-0.92)				
Model 1^{\dagger}	1	0.77 (0.45-1.32)	0.64 (0.37-1.10)	0.39 (0.20-0.75)	0.001	0.87 (0.81-0.95)				
Model 1 + HBA _{1c} ^{\ddagger}	1	0.81 (0.45-1.45)	0.70 (0.39-1.27)	0.47 (0.23-0.96)	0.030	0.91 (0.83-0.99)				
Model 1 + hypertension status [‡]	1	0.77 (0.45-1.32)	0.63 (0.37-1.09)	0.38 (0.20-0.75)	0.001	0.87 (0.81-0.95)				
Model $1 + HBA_{1c} + hypertension status$	1	0.81 (0.45-1.46)	0.70 (0.39-1.25)	0.47 (0.23-0.96)	0.026	0.91 (0.83-0.99)				

* p for trend calculated using season adjusted serum 25(OH)D as a continuous variable.

[†]Model 1: adjusted for race and duration of diabetes.

[‡]HBA_{1c} was entered as a continuous variable; hypertension status is defined as in Table 1.

Table 3: Adjusted OR and 95% CIs for diabetic retinopathy by vitamin D status stratified by age, sex, race, duration of diabetes, and HbA1c levels among Caucasian and African American ARIC study participants classified as having diabetes, with gradable eye photo at visit 3 (1993-95), and available serum 25(OH)D concentrations at visit 2 (1990-92) (N=1339)

	<30	30 to <50	50 to < 75	n 25(OH)D concenti ≥75	rations (nmol p-trend [*]	Continuous,
	Deficient	Inadequate	Adequate	Adequate	p-trenu	Per 10 nmol/L
Age Group						
47 to 54 years (n=471)						
# with DR / # in group	8/40	40/172	33/195	10/64		
Adjusted OR (95% CI) ^{\dagger}	1	1.20 (0.42-3.44)	0.90 (0.31-2.64)	1.44 (0.39-5.25)	0.800	1.02 (0.87-1.20)
55-59 years (n=356)						
# with DR / # in group	6/26	24/124	30/147	7/59		
Adjusted OR (95% CI)	1	0.84 (0.23-3.04)	1.12 (0.31-4.08)	0.88 (0.19-4.07)	0.686	0.96 (0.80-1.16)
60-64 years (n=332)						
# with DR / # in group	9/19	30/103	35/149	5/61		
Adjusted OR (95% CI)	1	0.43 (0.14-1.36)	0.39 (0.12-1.20)	0.10 (0.02-0.45)	0.011	0.80 (0.68-0.95)
65 to 68 years (n=180)						
# with DR / # in group	5/11	17/55	17/86	4/28		
Adjusted OR (95% CI)	1	0.64 (0.13-3.09)	0.38 (0.08-1.81)	0.27 (0.04-1.69)	0.203	0.86 (0.68-1.08)
p for interaction	0.372					· · · · ·
Sex						
Men (n=629)						
# with DR / # in group	5/18	38/161	64/323	12/127		
Adjusted OR (95% CI)	1	0.67 (0.19-2.36)	0.52 (0.15-1.79)	0.23 (0.06-0.89)	0.019	0.85 (0.75-0.97)
Women $(n=710)$						· · · · ·
# with DR / # in group	23/78	73/293	51/254	14/85		
Adjusted OR (95% CI)	1	0.80 (0.41-1.59)	0.68 (0.33-1.38)	0.78 (0.31-1.97)	0.262	0.93 (0.82-1.05)
<i>p</i> for interaction	0.320					
Race						
Caucasian $(n=906)$						
# with DR / # in group	10/38	55/249	73/428	23/191		
Adjusted OR (95% CI)	1	0.72 (0.29-1.81)	0.52 (0.21-1.28)	0.40 (0.15-1.07)	0.072	0.91 (0.82-1.01)
African American $(n = 433)$	-		(0.22 2.20)			(0.02 - 0.01)
# with DR / # in group	18/58	56/205	42/149	3/21		
Adjusted OR (95% CI)	1	0.89 (0.42-1.89)	0.98 (0.45-2.16)	0.45 (0.10-2.15)	0.268	0.91 (0.77-1.08)
<i>p</i> for interaction	0.555	())		(

Table 3: Adjusted OR and 95% CIs for diabetic retinopathy by vitamin D status stratified by age, sex, race, duration of diabetes, and HbA1c levels among Caucasian and African American ARIC study participants classified as having diabetes, with gradable eye photo at visit 3 (1993-95), and available serum 25(OH)D concentrations at visit 2 (1990-92) (N=1339)

		Vitamin D status	assessed with serun	n 25(OH)D concent	rations (nmol	I/L)
	<30 Deficient	30 to <50 Inadequate	50 to < 75 Adequate	≥75 Adequate	p-trend*	Continuous, Per 10 nmol/L
Duration of diabetes				,		
< 6 years (n=593)						
# with DR / # in group	5/44	13/195	15/256	1/98		
Adjusted OR (95% CI)	1	0.53 (0.17-1.60)	0.48 (0.16-1.45)	0.08 (0.01-0.72)	0.014	0.77 (0.62-0.95)
≥ 6 years (n=746)						
# with DR / # in group	23/52	98/259	100/321	25/114		
Adjusted OR (95% CI)	1	0.99 (0.50-1.95)	0.84 (0.43-1.65)	0.68 (0.30-1.52)	0.219	0.94 (0.85-1.04)
p for interaction	0.417					
HBA _{1c} levels						
\leq 7% (adequate control) (n=756)						
# with DR / # in group	5/47	21/241	16/326	4/142		
Adjusted OR (95% CI)	1	0.75 (0.26-2.13)	0.44 (0.15-1.29)	0.26 (0.06-1.07)	0.091	0.86 (0.73-1.02)
> 7% (inadequate control) (n=583)	<i>3)</i>					
# with DR / # in group	23/49	90/213	99/251	22/70		
Adjusted OR (95% CI)	1	0.93 (0.47-1.83)	0.89 (0.45-1.77)	0.65 (0.28-1.51)	0.163	0.93 (0.83-1.03)
p for interaction	0.290					

*p for trend calculated using serum 25(OH)D as a continuous variable.

[†]Model adjusted for race, duration of diabetes, HbA1c (continuous), and hypertension status. Strata of HbA1c are further adjusted for continuous levels of HBA_{1c}.

The following table is meant to be online supporting material.

eTable 1. Adjusted* ORs and 95%CI for diabetic retinopathy by reported quartile (Q) of dietary vitamin D intake from foods (IU/day) and by frequency of consumption of vitamin D rich foods at visit 1 (1987-1989) among Caucasian and African American ARIC study participants classified as having diabetes and having gradable eye photos at visit 3 (1993-95) and dietary data at visit 1 (N=1305[†])

eTable 1: Adjusted* ORs and 95% CI for diabetic retinopathy by reported quartile (Q) of dietary vitamin D intake from foods (IU/day) and by frequency of consumption of vitamin D rich foods at visit 1 (1987-1989) among Caucasian and African American ARIC study participants classified as having diabetes and having gradable eye photos at visit 3 (1993-95) and dietary data at visit 1 (N=1305[†])

	Category of selected food intake by frequency of consumption							
Vitamin D intake (Q): (range) # with DR / # in group	Q1: (11.2 - 132.8) 58/326	Q2: (132.9 - 203.5) 69/326	Q3: (203.5 - 300.5) 77/327	Q4: (301.0 - 1041.5) 70/326				
Adjusted OR (95% CI)	1	1.38 (0.88-2.17)	1.56 (1.00-2.44)	1.20 (0.76-1.89)	0.740			
Skim or low fat milk (8 oz.) # with DR / # in group	Never 85/482	1/month to <1/day 67/289	1/day 89/364	> 1/day 33/170				
Adjusted OR (95% CI)	1	1.65 (1.08-2.51)	1.72 (1.15-2.57)	1.13 (0.67-1.91)	0.596			
Whole milk (8 oz.) # with DR / # in group	Never 185/880	1/month to <1/day 59/294	1/day 22/95	> 1/day 8/36				
Adjusted OR (95% CI)	1	1.01 (0.69-1.49)	1.44 (0.80-2.57)	0.88 (0.35-2.23)	0.434			
Dark fish (3 to 5 oz.) [§] # with DR / # in group	Never 139/687	1/month to <1/week 85/374	1/week 41/188	> 1/week 9/56				
Adjusted OR (95% CI)	1	1.00 (0.70-1.43)	0.95 (0.60-1.51)	0.32 (0.14-0.78)	0.060			
Other fish (3 to 5 oz.) [§] # with DR / # in group	Never 75/365	1/month to <1/week 77/407	1/week 76/356	> 1/week 46/177				
Adjusted OR (95% CI)	1	0.76 (0.50-1.16)	0.80 (0.52-1.25)	1.16 (0.70-1.92)	0.638			

*Odds ratios were adjusted for race, duration of diabetes, HBA_{1c} (continuous), and hypertension status.

[†]There were 34 participants of the 1,339 with missing dietary vitamin D data at visit 1

[‡]p for trend was calculated using dietary vitamin D intake or frequency of consumption of selected food at visit 1 as a continuous variable. [§] Dark meat fish such as salmon, mackerel, swordfish, sardines, bluefish; other fish, such as cod, perch, catfish, etc.