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IMPORTANCE Deficient 25-hydroxyvitamin D (25[OH]D) concentrations have been associated
with increased odds of age-related macular degeneration (AMD).

OBJECTIVE To examine whether this association is modified by genetic risk for AMD and
whether there is an association between AMD and single-nucleotide polymorphisms of genes
involved in vitamin D transport, metabolism, and genomic function.

DESIGN, SETTING, AND PARTICIPANTS Postmenopausal women (N = 913) who were
participants of the Carotenoids in Age-Related Eye Disease Study (CAREDS) (aged 54 to <75
years) with available serum 25(OH)D concentrations (assessed October 1, 1993, to December
31, 1998), genetic data, and measures of AMD (n = 142) assessed at CAREDS baseline from
May 14, 2001, through January 31, 2004, were studied.

MAIN OUTCOMES AND MEASURES Prevalent early or late AMD was determined from graded,
stereoscopic fundus photographs. Logistic regression was used to estimate odds ratios (ORs)
and 95% CIs for AMD by the joint effects of 25(OH)D (<12, �12 to <20, �20 to <30, and
�30 ng/mL) and risk genotype (noncarrier, 1 risk allele, or 2 risk alleles). The referent group
was noncarriers with adequate vitamin D status (�30 ng/mL). Joint effect ORs were adjusted
for age, smoking, iris pigmentation, self-reported cardiovascular disease, self-reported
diabetes status, and hormone use. Additive and multiplicative interactions were assessed
using the synergy index (SI) and an interaction term, respectively. To examine the association
between AMD and variants in vitamin D–related genes, age-adjusted ORs and 95% CIs were
estimated using logistic regression.

RESULTS Among the 913 women, 550 had adequate levels of vitamin D (�20 ng/mL),
275 had inadequate levels (�12 to <20 mg/mL), and 88 had deficient levels (<12 ng/mL).
A 6.7-fold increased odds of AMD (95% CI, 1.6-28.2) was observed among women with
deficient vitamin D status (25[OH]D <12 ng/mL) and 2 risk alleles for CFH Y402H (SI for
additive interaction, 1.4; 95% CI, 1.1-1.7; P for multiplicative interaction = .25). Significant
additive (SI, 1.4; 95% CI, 1.1-1.7) and multiplicative interactions (P = .02) were observed for
deficient women with 2 high-risk CFI (rs10033900) alleles (OR, 6.3; 95% CI, 1.6-24.2). The
odds of AMD did not differ by genotype of candidate vitamin D genes.

CONCLUSIONS AND RELEVANCE In this study, the odds of AMD were highest in those with
deficient vitamin D status and 2 risk alleles for the CFH and CFI genotypes, suggesting a
synergistic effect between vitamin D status and complement cascade protein function.
Limited sample size led to wide CIs. Findings may be due to chance or explained by residual
confounding.
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A ge-related macular degeneration (AMD) is the leading
cause of visual impairment and blindness in older
Americans,1 has no cure, and has only limited treat-

ment options. Research indicates a role for inflammation in the
pathogenesis of AMD.2 Individuals with a history of inflam-
matory diseases have been found to have an increased risk of
AMD,3,4 and markers of systemic inflammation have been posi-
tively associated with late AMD.5 Inflammatory molecules are
found within drusen, suggesting that these accumulations elicit
a local chronic inflammation.6 In addition, variants in genes
for inflammatory response proteins are associated with AMD
risk.7-12 The CFH Y402H single-nucleotide polymorphism (SNP)
(rs1061170) increases risk 1.4- to 1.5-fold for early AMD11 and
2.5- to 6.0-fold for late AMD.7

Vitamin D has anti-inflammatory and immune-modulating
properties13 and is hypothesized to protect against the devel-
opment of AMD.14 Animal models15-18 and epidemiologic
studies19-21 of autoimmune disease support this hypothesis. In
vivo research indicates that both the proteins for the vitamin
D receptor (VDR) and the enzyme 1-α-hydroxylase, which
converts the major circulating metabolite of vitamin D
(25-hydroxyvitamin D [25(OH)D]) to its active hormone calcitriol
(1,25-dihydroxyvitamin D), are expressed in the retina.22

Previous studies have found that decreased odds of AMD
are associated with high compared with low concentrations of
25(OH)D,14,23,24 vitamin D intake from foods,23,25 and certain
polymorphisms in genes involved in vitamin D metabolism,26

although other studies27-29 do not support an association. Re-
search in the Carotenoids in Age-Related Eye Disease Study
(CAREDS) revealed that postmenopausal women younger than
75 years had an increased odds of AMD if they had low vs high
vitamin D status assessed with intake of vitamin D and
25(OH)D concentrations.23 We proposed to investigate whether
this previously observed association between 25(OH)D and
AMD was stronger in women with established AMD risk geno-
types, including several that influence inflammatory path-
ways, and to investigate the association between AMD and
SNPs in genes involved in vitamin D transport, metabolism,
and genomic function.

Methods
Study Sample
CAREDS was conducted to study the association of lutein and
zeaxanthin with AMD.30-32 A total of 2005 women enrolled in
CAREDS from May 14, 2001, through January 31, 2004, a mean
of 6 years after the Women’s Health Initiative Observational
Study (WHI-OS) baseline (October 1, 1993, to December 31,
1998). This research study was approved at all institutions by
their institutional review boards, and the study procedures con-
formed to the Declaration of Helsinki. Written informed con-
sent was obtained from all participants.

All CAREDS participants were administered question-
naires at WHI-OS and CAREDS baseline to assess demo-
graphic characteristics, family and medical history, and life-
style habits inclusive of relevant AMD risk factors. Gradable
retinal photographs were obtained from 1853 of 1894 women

attending CAREDS’ baseline study visits (May 14, 2001, through
January 31, 2004). Four additional women were included who
had no retinal photographs but provided a physician’s confir-
mation of AMD status. Of these, 1230 had sufficient serum
amounts at WHI-OS baseline (October 1, 1993, to December 31,
1998) for 25(OH)D assessment, gave approval for use of their
genetic data, had sufficient DNA for genotyping, and passed
quality assurance and control tests for genotyping.

Women enrolled in CAREDS but excluded because of miss-
ing serum 25(OH)D and genetic data (n = 775) had a similar
prevalence of AMD and a similar mean intake of vitamin D com-
pared with women with these data (n = 1230) (eTable 1 in the
Supplement). Women with compared with women without
missing data were slightly older (P = .01) and had healthier life-
style scores (P = .06).

The current analyses are limited to the sample of women
aged 54 to younger than 75 years (N = 913), in whom we pre-
viously observed an association between vitamin D status and
AMD.23 We do not present data in women 75 years or older be-
cause of the small sample size (n = 317) and potential selec-
tive mortality bias in this older sample.23 A slightly larger
sample (n = 1230) of women younger than 75 years was avail-
able for the analysis of the association between AMD and SNPs
of vitamin D–related genes because women were not further
excluded for missing 25(OH)D data.

Retinal Photographs
Stereoscopic retinal fundus photographs were taken at CAREDS
baseline (May 14, 2001, through January 31, 2004) and graded
by the University of Wisconsin Fundus Photography Reading
Center using the Age-Related Eye Disease Study (AREDS)
protocol.33 The outcome for these analyses was presence of early
or late AMD (any AMD). Early AMD was classified similarly to
AREDS category 3,33 including the presence of one or more large
drusen (≥125 μm) or extensive intermediate drusen (≥360 μm
when soft indistinct drusen were present or ≥650 μm when soft
indistinct drusen were absent). Different from the AREDS cat-
egory 3, the presence of early AMD also included having pigmen-
tary abnormalities or an increase or decrease in pigmentation if
accompanied by at least one drusen 63 μm or larger. Late AMD
included geographic atrophy (noncentral or central), neovascu-
larization, or exudation in the center subfield. eTable 2 in the
Supplement lists the distribution of AMD cases by severity. Most

At a Glance

• Deficient vitamin D status has been associated with increased
odds of age-related macular degeneration (AMD); modification
by genetic risk for AMD is unknown.

• Women deficient in vitamin D, with 2 high-risk alleles
(CFH Y202H or CFI [rs100333900]), were at increased odds
of having AMD.

• Study limitations include small number of cases in joint effect
cells and possible spurious findings from multiple testing.

• The possibility of residual confounding exists, and the use of
prevalent AMD cases limits our ability to determine causality.

• Maintenance of adequate vitamin D status, especially in persons
at high genetic risk, should be considered for AMD prevention.
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of these cases (133 of 142 [93.7%]) were early AMD. The reference
group included women who had neither early nor late AMD, gen-
erally corresponding to AREDS categories 1 and 2.33

Serum Vitamin D Assays
Fasting blood samples collected at WHI-OS baseline (October
1, 1993, to December 31, 1998) were assessed for serum con-
centrations of 25(OH)D using the Diasorin LIAISON chemilu-
minescence method (Heartland Assays Inc).23 We adjusted for
season of blood draw by regressing 25(OH)D concentrations on
month of blood draw using a nonparametric regression
technique.23,34 Residuals were added to the sample 25(OH)D
mean to obtain season-adjusted 25(OH)D concentrations,
which are presented in the following analyses.

Genotyping
Serum, obtained at WHI-OS baseline, was stored and frozen at
−80°C until DNA was extracted from the buffy coats and geno-
typed. Within CAREDS, a custom 768-SNP panel was designed
to genotype candidate genes for carotenoid status,35 vitamin D
status,36 and risk of AMD. The panel included 5 established ge-
netic variants for late AMD: Y402H (rs1061170) in CFH,7

rs10033900 in CFI,12 rs641153 in CFB/C2,8,9 rs2230199 in C3,10

and A69S (rs10490924) in ARMS2.8,37 The SNPs from 6 vita-
min D–related genes, some of which have been previously de-
scribed in CAREDS,36 were also included: DHCR7, CYP2R1,
CYP27B1, CYP24A1, VDR, and GC (see footnotes in Table 2 and
eTable 3 for database links to individual variants).

Genotyping was conducted at Case Western Reserve Uni-
versity. Genotyping of all noted SNPs above, but not CFH
Y402H, were conducted with an Illumina Custom Golden-
Gate Assay, and genotype calls were made using Illumina Ge-
nome Studio (Illumina Inc). Genotyping of Y402H was con-
ducted using the KASP Assay at LCG Genomics and called via
the KASP SNP Genotyping System. CFH Y402H genotypes were
imputed using MACH (http://csg.sph.umich.edu//abecasis
/MACH/index.html) when there was insufficient DNA for KASP
genotyping after Illumina genotyping (approximately 3%). Im-
putation was performed using the available chromosome 1
SNPs from Illumina (n = 14 SNPs) and 1000 Genomes Project
European ancestry panel as a reference. The resulting R2 from
imputing Y402H was 99.5%. All SNPs passed standard qual-
ity control filters,38 including Hardy-Weinberg equilibrium χ2

P > 1.0 × 10−6, minor allele frequency greater than 0.01, and
genotype call rates greater than 95%.

Statistical Analyses
We created 4 categories of vitamin D status based on 25(OH)D
and the Institute of Medicine’s Dietary Reference Intakes39 (<12
[deficient], ≥12 to <20 [inadequate], ≥20 to <30 [adequate], and
≥30 [adequate] ng/mL [to convert to nanomoles per liter, mul-
tiply by 2.496]). We categorized women into 3 genotype groups
for each SNP according to whether they had 1 or 2 high-risk
alleles or were a noncarrier for each risk gene (additive ge-
netic model). For CFB/C2, we combined women with 1 and 2
copies of the minor allele (A) owing to low number of homo-
zygous women (nAA = 10) (dominant genetic model with re-
spect to the minor allele).

Logistic regression was used to estimate age-adjusted odds
ratios (ORs) and 95% CIs for AMD by (1) vitamin D status,
(2) established AMD risk genotype, and (3) combined catego-
ries of vitamin D and risk genotype. For the joint analyses, the
reference group was the hypothesized lowest-risk group, de-
fined as women with a 25(OH)D concentration of 30 ng/mL or
greater and a genotype indicative of low AMD risk. The ORs
in the joint analysis were adjusted for the following covari-
ates used in the previous vitamin D status and AMD analysis:
smoking pack-years, iris pigmentation, self-reported cardio-
vascular disease, self-reported diabetes status, and hormone
use status.23 A P for ordinal trend across vitamin D status cat-
egories was determined within each genotype class.

To test for deviation from a multiplicative interaction, we ex-
amined the P value for the interaction term (25[OH]D*genotype)
using genotype (0, 1, or 2 risk alleles) and vitamin D status cat-
egories as ordinal variables. An interaction term with P < .05 was
considered statistically significant. A deviation from an additive
effect was examined using the synergy index (SI).40 An SI greater
or less than 1.0 indicated that genotype and vitamin D status act
jointly more than or less than additively, respectively.

Toaddressoursecondstudyaim,logisticregressionwasused
to estimate the age-adjusted ORs and 95% CIs for AMD by vari-
ants in vitamin D–related genes using an additive genetic model.

All analyses were conducted using SAS statistical soft-
ware, version 9.2 (SAS Institute Inc).

Results
Among the 913 women, 550 had adequate levels of vitamin D
(≥20 ng/mL), 275 had inadequate levels (≥12 to <20 mg/mL),
and 88 had deficient levels (<12 ng/mL). Women with defi-
cient compared with adequate vitamin D status were less likely
to be white, were less likely to have high incomes, were less
likely to have an educational level beyond high school, were
more likely to be nondrinkers, were less likely to have healthy
diet patterns or engage in physical activity, were more likely
to have lower self-reported ocular visible sun exposure, were
more likely to be obese, and were less likely to use hormone
replacement therapy (Table 1).

Age-adjusted odds of AMD are reported by vitamin D sta-
tus and genotypes of high-risk AMD genes and vitamin D–re-
lated genes. Women with deficient (<12 ng/mL) compared with
adequate (≥30 ng/mL) status had a 2.6-fold increased odds of
AMD (95% CI, 1.3-5.2), those with inadequate status (≥12 to <20
ng/mL) had a 1.5-fold increase (95% CI, 0.8-2.6), and those with
adequate status (≥20 to <30 ng/mL) had a 1.6-fold increase (95%
CI, 0.9-2.7) (P for trend = .01). There was a more than 2-fold
increased odds of AMD among women with 2 risk alleles for
CFH (CC) or ARMS2 (AA) compared with noncarriers (Table 2).
The P for trend = .04 for increasing number of risk alleles for
CFI. The SNPs in CYP2R1 (rs11819875 and rs12418214) and VDR
(rs11168275, rs2189480, and rs2239186) were associated with
increased odds of AMD (eTable 2 in the Supplement).

Table 3 details the joint effects of genotypes by vitamin D
status. The adjusted ORs presented in these tables differ mini-
mally from the ORs adjusted only for age. There was 6.7-fold
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Table 1. Characteristics of Participants Younger Than 75 Years by Vitamin D Status Determined at WHI-OS Baseline (October 1, 1993, to December 31, 1998)a

Characteristic

No. (%) of Participants by Vitamin D Status Determined by 25(OH)D (N = 913)

P Valueb

Adequate
(≥30 ng/mL)
(n = 177)

Adequate
(≥20 to <30 ng/mL)
(n = 373)

Inadequate
(≥12 to <20 ng/mL
(n = 275)

Deficient
(<12 ng/mL)
(n = 88)

25(OH)D, median (range), ng/mL 34 (30-66) 24 (20-30) 16 (12-20) 10 (3-12) NA

Demographic

Age at eye photography, mean (SE), y 65.8 (0.4) 66.0 (0.3) 66.9 (0.3) 66.1 (0.5) .08
White 174 (98.3) 367 (98.4) 267 (97.1) 82 (93.2) .02

Annual Income ≥$75 000 48 (27.6) 67 (18.8) 41 (15.8) 10 (12.1) .001

Educational level

High school or less 39 (22.0) 77 (20.6) 62 (22.6) 32 (36.4)

.005College 78 (44.1) 184 (49.3) 136 (49.5) 40 (45.5)

Postcollege 60 (33.9) 112 (30.0) 77 (28.0) 16 (18.2)

Study site

Iowa 65 (36.7) 127 (34.1) 99 (36.0) 33 (37.5)

.20Oregon 46 (26.0) 121 (32.4) 88 (32.0) 31 (35.2)

Wisconsin 66 (37.3) 125 (33.5) 88 (32.0) 24 (27.3)

Smoking, pack-yearsc

Never 103 (58.2) 213 (57.1) 151 (54.9) 46 (52.3)

.110-7 42 (23.7) 89 (23.9) 69 (25.1) 16 (18.2)

>7 32 (18.1) 71 (19.0) 55 (20.0) 26 (29.6)

Alcohol, g/wk

Nondrinker 62 (35.0) 138 (37.0) 113 (41.1) 41 (46.6)

.0090.4 to <4.0 55 (31.1) 114 (30.6) 87 (31.6) 29 (33.0)

≥4 to <127 60 (33.9) 121 (32.4) 75 (27.3) 18 (20.5)

Modified Healthy Eating Index 2005 63.5 (0.6) 63.9 (0.4) 62.0 (0.5) 59.2 (0.9) <.001

Recreational physical activity, MET- h/wk

0-3 31 (17.5) 85 (22.9) 77 (28.1) 37 (43.5)

<.001
3-10 37 (20.9) 69 (18.6) 68 (24.8) 17 (20.0)

10-21 46 (26.0) 118 (31.8) 70 (25.6) 16 (18.8)

≥21 63 (35.6) 99 (26.7) 59 (21.5) 15 (17.7)

Ocular visible sun exposure in the last
20 y, Maryland sun-years, mean (SE)c

0.82 (0.03) 0.72 (0.02) 0.72 (0.02) 0.67 (0.04) .006

Ocular and medical factors

Iris color, bluec 74 (41.8) 150 (40.2) 124 (45.1) 33 (37.5) .90

Family history of macular
degenerationc

33 (18.6) 63 (16.9) 38 (13.8) 10 (11.4) .06

BMI

<22.5 48 (27.1) 69 (18.5) 25 (9.1) 8 (9.1)

<.001

≥22.5 to <25 42 (23.7) 73 (19.6) 44 (16.0) 14 (15.9)

≥25 to <30 55 (31.1) 141 (37.8) 105 (38.2) 25 (28.4)

≥30 to <35 29 (16.4) 65 (17.4) 53 (19.3) 21 (23.9)

≥35 3 (1.7) 25 (6.7) 48 (17.5) 20 (22.7)

Hypertension 42 (23.7) 85 (22.8) 66 (24.0) 31 (35.2) .10

Cardiovascular disease 37 (20.9) 72 (19.3) 67 (24.4) 17 (19.3) .58

Diabetes mellitus 2 (1.1) 10 (2.7) 6 (2.2) 3 (3.4) .36

Hormone replacement therapy

Never 36 (20.3) 117 (31.4) 81 (29.5) 34 (38.6)

.005Past 22 (12.4) 41 (11.0) 35 (12.7) 11 (12.5)

Current 119 (67.2) 215 (57.6) 159 (57.8) 43 (48.9)

CRP concentration, mean (SE), mg/L 4.63 (0.43) 4.44 (0.29) 5.11 (0.34) 4.80 (0.61) .36

Abbreviations: 25(OH)D, 25-hydroxyvitamin D; BMI, body mass index
(calculated as the weight in kilograms divided by height in meters squared);
CAREDS, Carotenoids in Age-Related Eye Disease Study; CRP, C-reactive
protein; MET, metabolic equivalent of task; NA, not applicable;
WHI-OS, Women’s Health Initiative Observational Study.

SI conversion factors: To convert CRP to nanomoles per liter, multiply by 9.524;
25(OH)D to nanomoles per liter, multiply by 2.496.
a Data are presented as number (percentage), and characteristics were assessed

at WHI baseline (1993-1998) unless otherwise noted.
b P values are for general associations. For categorical variables, the

Cochran-Mantel-Haenszel statistic for a general association is used. For
continuous variables, an analysis of variance to compare means by ordinal
trend of serum vitamin D is used.

c Characteristics assessed at CAREDS baseline (2001-2004).
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(95% CI, 1.6-28.2) increased odds of AMD among vitamin D–de-
ficient women with 2 risk CFH alleles (CC) compared with non-
carriers with adequate vitamin D status (≥30 ng/mL), with an
SI of 1.4 (95% CI, 1.1-1.7). There was 6.3-fold (95% CI, 1.6-24.2)
increased odds of AMD among vitamin D–deficient women
with 2 risk CFI alleles (AA) relative to noncarriers with ad-
equate vitamin D status, with an SI of 1.4 (95% CI, 1.1-1.7; P for
interaction = .02). Further adjustment of models for educa-
tional level, principal components from principal compo-
nent analysis using 176 ancestry informative markers, body
mass index (BMI) (calculated as the weight in kilograms di-
vided by height in meters squared), and recreational physical
activity minimally influenced results. There was no evidence
of an interaction between vitamin D status and the ARMS2,
CFB/C2, and C3 genotypes.

Table 3 also presents the P for trend values for the odds of
AMD across ordinal decreasing concentrations of 25(OH)D
stratified by genotype. There was a P for trend < .05 for women
with 2 high-risk CFH alleles (CC), 2 high-risk CFI alleles (AA),
and noncarriers of the ARMS2 high-risk allele.

Discussion
This study examined the joint effects of vitamin D status and
high-risk genotypes on AMD. We observed a multiplicative in-
teraction between vitamin D status and CFI, suggesting that
the relative odds of AMD among women with deficient vs ad-
equate vitamin D status differed by CFI genotype. We also ob-
served additive interactions between vitamin D status and both
CFH and CFI genotype. These additive interactions suggest that
the greatest burden (attributable risk) of AMD may be in vita-
min D–deficient women with 2 high-risk alleles (CFH or CFI),

indicating that the burden is above that expected from the ad-
dition of these 2 exposures alone.41 Although the relative odds
of AMD by vitamin D status may be similar in different CFH
genotypes, the higher incidence of AMD among women with
2 high-risk CFH alleles (CC) (compared with one or none) may
to lead to a greater burden (excess fraction) of AMD cases in
vitamin D–deficient vs adequate women than in other CFH
genotypes.41,42 Additive interaction might also be considered
evidence of biological synergy.

We hypothesize that vitamin D suppresses a proinflam-
matory state in the retina via its genomic functions.43 Cal-
citriol is thought to modulate the adaptive immune response
to suppress damaging inflammation44 by decreasing im-
mune cell proinflammatory cytokine production,45-48 inhib-
iting dendritic cell maturation,49 inhibiting T- and B-
lymphocyte proliferation,45,50,51 and inducing T-regulatory cell
function.52 Polymorphisms in proteins essential to the comple-
ment cascade increase the risk of AMD.7-12 The CFH Y402H
polymorphism53,54 results in a CFH protein with decreased C-
reactive protein binding at this site.54,55 Both C-reactive pro-
tein and the CFH protein form a protein complex involved in
inhibition of the complement cascade, which works less effi-
ciently for those homozygous for the CFH Y402H risk
allele.54,56 The CFI acts to inhibit the complement cascade by
inactivating C3b and C4b,12,57 but this regulation requires the
cofactor of CFH,12,57 illustrating the interconnectedness of these
2 proteins in cascade inhibition. Our study’s results suggest that
being vitamin D deficient might impair one’s ability to sup-
press a localized inflammatory response, which when coupled
with a dysfunctional complement pathway response could lead
to increased risk of AMD above that expected from either in-
dependent risk factor alone. A study in aged mice58 found that
vitamin D administration led to reductions in complement

Table 2. Prevalence of High-Risk AMD Genotypes and Age-Adjusted ORs of AMD Assessed at CAREDS Baseline
(May 14, 2001, Through January 31, 2004) Among CAREDS Participants Younger Than 75 Years

Genotypea
No. (%) of Participants
(N = 913)

No. of Cases
of AMD

Age-Adjusted OR
(95% CI)

P Value
for Trendb

CFH (rs1061170)

TT 350 (38.3) 36 1 [Reference] .001

CT 429 (47.0) 77 1.9 (1.2-2.9)

CC 134 (14.7) 29 2.4 (1.4-4.1)

CFI (rs10033900)

GG 227 (24.9) 33 1 [Reference] .04

GA 456 (50.0) 60 0.9 (0.6-1.5)

AA 229 (25.1) 49 1.6 (1.0-2.7)

CFB/C2 (rs641153)

AA/AG 148 (16.2) 22 1 [Reference] .76

GG 765 (83.8) 120 1.1 (0.7-1.8)

C3 (rs2230199)

CC 37 (4.0) 6 1 [Reference] .87

GC 302 (33.1) 45 1.0 (0.4-2.5)

GG 574 (62.9) 91 1.0 (0.4-2.5)

ARMS2 (rs10490924)

CC 540 (59.3) 68 1 [Reference] .002

AC 332 (36.4) 64 1.7 (1.1-2.4)

AA 39 (4.3) 10 2.4 (1.1-5.1)

Abbreviations: AMD, age-related
macular degeneration;
CAREDS, Carotenoids in Age-Related
Eye Disease Study; OR, odds ratio.
a Individual variants are searchable in

the National Center for
Biotechnology Information
database dbSNP by the rs number
identifier: http://www.ncbi.nlm.nih
.gov/SNP/.

b P value for trend with increasing
number of risk alleles.
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component C3b retinal expression (Bruch membrane) com-
pared with controls. Currently, a biologic mechanism for a syn-
ergistic interaction between vitamin D status and comple-
ment pathway protein function is unknown.

Some14,25,26 but not all28,29 epidemiologic studies sup-
port a role of vitamin D in AMD. In addition to vitamin D in-
take or 25(OH)D, vitamin D status can also be inferred from
genotypes previously associated with serum 25(OH)D. This is
an underlying tenet of the method known as mendelian ran-

domization, which is an increasingly used method in epide-
miology to test unconfounded, causal associations between
exposures and disease.59 Morrison et al26 observed that vari-
ants (rs1570669, rs1570670, rs2274130, rs2296239, rs4809957)
in the vitamin 1,25(OH)2D catabolizing CYP24A1 gene were as-
sociated with a decreased odds of AMD. We examined these
SNPs and also an SNP from a genome-wide association meta-
analysis (rs6013897)60 and another that is a nonsynonymous
(coding) SNP (rs35031736) in an effort to more broadly cap-

Table 3. ORs of Any AMD Assessed at CAREDS Baseline (May 14, 2001, Through January 31, 2004) by Vitamin D Status and High-Risk AMD Genotype
Among CAREDS Participants Younger Than 75 Yearsa,b

Genotype

Vitamin D Status Determined by 25(OH)D

P Value
for Trendc

Synergy
Index
(95% CI)

P Value for
Interaction

Adequate
(≥30 ng/mL)

Adequate
(≥20 to <30 ng/mL)

Inadequate
(≥12 to <20 ng/mL)

Deficient
(<12 ng/mL)

OR
(95% CI)

No. of
AMD Cases/
Total No. of
Participants

OR
(95% CI)

No. of
AMD Cases/
Total No. of
Participants

OR
(95% CI)

No. of
AMD Cases/
Total No. of
Participants

OR
(95% CI)

No. of
AMD Cases/
Total No. of
Participants

CFH
(rs1061170)

TT 1 [Reference] 5/62 1.2
(0.4-3.5)

16/159 1.0
(0.3-3.3)

10/97 1.8
(0.5-7.1)

5/32 .40

1.4
(1.1-1.7) .25CT 1.3

(0.4-4.3)
9/81 2.8

(1.0-7.5)
35/165 1.8

(0.7-5.1)
22/142 3.4

(1.1-10.9)
11/41 .35

CC 1.8
(0.5-6.9)

5/34 2.1
(0.6-7.0)

8/49 4.4
(1.3-14.1)

11/36 6.7
(1.6-28.2)

5/15 .02

CFI
(rs10033900)

GG 1 [Reference] 4/47 3.1
(0.9-9.9)

17/80 1.6
(0.5-5.5)

10/73 0.8
(0.1-4.9)

2/27 .87

1.4
(1.1-1.7) .02GA 1.9

(0.6-6.5)
11/85 1.7

(0.5-5.1)
24/200 1.3

(0.4-4.3)
15/135 4.6

(1.3-16.6)
10/36 .34

AA 1.2
(0.3-5.1)

4/45 2.7
(0.8-8.5)

18/92 4.2
(1.3-13.6)

18/67 6.3
(1.6-24.2)

9/25 .01

ARMS2
(rs10490924)

CC 1 [Reference] 8/125 2.2
(0.9-5.0)

29/207 1.5
(0.6-3.7)

18/160 4.9
(1.8-13.1)

13/48 .02

d .09AC 2.6
(0.9-7.7)

7/43 3.4
(1.5-7.8)

28/148 3.3
(1.4-8.0)

22/107 3.9
(1.3-11.8)

7/34 .58

AA 11.9
(2.5-56.9)

4/9 1.6
(0.3-8.3)

2/18 13.8
(2.4-81.1)

3/6 1.6
(0.1-16.5)

1/6 .68

ARMS2
(rs10490924)

CC 1 [Reference] 8/125 2.2
(1.0-5.0)

29/207 1.5
(0.6-3.7)

18/160 4.9
(1.9-13.2)

13/48 .02
d .13

AC/AA 3.6
(1.3-9.6)

11/52 3.1
(1.4-7.2)

30/166 3.7
(1.6-8.7)

25/113 3.3
(1.1-9.8)

8/40 .90

CFB/C2
(rs641153)

AA/AG 1.0 4/30 0.9
(0.2-3.2)

8/68 0.6
(0.1-3.1)

3/30 3.3
(0.8-13.9)

7/20 .32
d .48

GG 0.8
(0.2-2.5)

15/147 1.3
(0.4-3.9)

51/305 1.2
(0.4-3.6)

40/245 1.6
(0.5-5.5)

14/68 .16

C3
(rs2230199)

CC 1.0 2/9 d 0/12 1.9
(0.3-14.4)

4/12 d 0/4 .61

1.3
(0.8-2.1) .09GC 0.7

(0.1-3.8)
8/58 0.8

(0.1-4.1)
22/136 0.5

(0.1-2.6)
10/82 0.8

(0.1-5.4)
5/26 .89

GG 0.3
(0.1-1.9)

9/110 0.7
(0.1-3.6)

37/225 0.7
(0.1-3.4)

29/181 1.4
(0.3-7.9)

16/58 .01

Abbreviations: 25(OH)D, 25-hydroxyvitamin D; AMD, age-related macular
degeneration; CAREDS, Carotenoids in Age-Related Eye Disease Study;
OR, odds ratio.
a Adjusted for age, smoking pack-years, iris pigmentation, self-reported

cardiovascular disease, self-reported diabetes status, and hormone use status.

b The single-nucleotide alleles are listed in order of increasing AMD risk.
c P value for ordinal trend across categorized concentrations of 25(OH)D within

each genotype class.
d Synergy index could not be estimated.
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ture variation in this gene. We observed that 2 polymor-
phisms in the CYP2R1 gene and 3 in the VDR gene were asso-
ciated with increased odds of AMD. However, these SNPS were
not found to be predictors of 25(OH)D status in 2 large genome-
wide association studies60,61 or SNPs known to influence the
function of the VDR.62 Adjustment for multiple testing63 would
have resulted in no statistically significant findings. Discrep-
ancies in study findings may be explained by differences in
stages of AMD between study samples because there was a large
proportion of late AMD cases (36%-38%) in the previous study26

compared with CAREDS (6%; n = 4 neovascular, n = 5 geo-
graphic atrophy).

Few studies64-69 have examined associations between di-
etary factors and genes on AMD risk (K.J.M., unpublished data,
2014) and none with 25(OH)D. Previous literature has ob-
served that intake of fish (a rich food source of vitamin D)69

and ω3 docosahexaenoic fatty acids (a nutrient concentrated
in fish)68 were protective against progression to late AMD in
those with high genetic risk. Vitamin D status may partly ex-
plain these findings.

It is also possible that vitamin D status is a marker of
overall healthy lifestyle, and findings with respect to
25(OH)D are confounded by such factors as diet, body fat-
ness, and physical activity, factors correlated with vitamin D
status.23 A previous study70 found the greatest odds for late
AMD in persons with the high-risk CFH Y402H genotype
and high BMI. Results in CAREDS revealed that a healthy
lifestyle score was associated with a reduced odds of AMD71

and that the greatest odds of disease was in women with the
CC CFH Y402H genotype and low healthy lifestyle score
(K.J.M., unpublished data, 2014). The findings of these
studies parallel our findings with vitamin D status. We
adjusted ORs for BMI and physical activity, but this did not
influence our study conclusions. Difficulty in adjusting for
highly correlated variables makes it impossible outside the

context of a clinical trial to know whether vitamin D status
causally influences risk for AMD.

This study was limited by a small sample size for the inves-
tigation of interactions, with small numbers of cases within joint
effect cells leading to wide CIs. It is possible our findings are
purely by chance because we did not adjust for multiple test-
ing. The possibility of residual confounding cannot be ex-
cluded because this was an observational study. Although this
study assessed prevalent AMD, ocular photographs were
taken approximately 6 years after assessment of vitamin D sta-
tus. Only 1.9% (23 of 1230) of CAREDS women with 25(OH)D
data, genetic data, and fundus photographs self-reported hav-
ing AMD at WHI-OS baseline (October 1, 1993, to December 31,
1998). Early AMD is asymptomatic, so it is unlikely that behav-
ior changes as a result of AMD occurred before the WHI-OS base-
line blood assessment, resulting in reverse causality. Because
our study included primarily highly educated white women, our
findings may not be generalizable to other populations.

Conclusions
Despite these limitations, minimal data exist on interactions be-
tween dietary and genetic factors in the context of age-related
eye disease. To the best of our knowledge, effect modification
of genetic risk by vitamin D status has not previously been ex-
plored. This cohort of postmenopausal women is very well de-
fined, with detailed data on AMD risk factors and graded reti-
nal photographs for age-related eye disease, and adds to the
existing body of literature. Our study provides evidence of a sug-
gestive joint effect between vitamin D status and genotypes of
complement factor genes. Maintenance of an adequate vita-
min D status and likely an overall healthy lifestyle may reduce
the total burden of early AMD to the greatest extent in those with
high genetic risk for genes in the complement cascade.
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